人生就像骑单车想要保持平衡就得往前走下面是小编整理的《植树问题》教学反思【15篇】,欢迎大家阅读和收藏一下噢。《植树问题》教学反思1
《植树问题》是人教版小学数学五年级上册数学广角的内容,安排“植树问题”的目的在于向学生渗透复杂问题从简单入手的思想。
教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学发展学生的思维,提高学生一定的思维能力。
两端都栽的植树问题,主要目标是向学生渗透复杂问题从简单入手的思想,使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。反思整个教学过程,我认为我执教的这节课整体是成功的。
根据学生的认知规律,我设计了以下几个环节。课前创设情境使学生明确要学习的内容,紧接着引出例题探讨植树问题,使学生明白:路长、间隔长度、间隔数、棵树的含义。然后让学生猜想种的棵树,通过画图验证的方法使学生体会到100这个数字在这道题中显得数字有些大,将长度改成20米、25米,再次进行画图验证。目的在于,让学生在现实的情景中,用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。在这里改小数据,有利于学生的思考,主要照顾后20℅的学生。然后以例题展开,让学生动脑、动手反复验证,最终总结出:间隔数+1=棵数。整节课条理清晰、层次分明、浅显易懂,始终围绕重点内容进行难点的突破。
反思整个教学过程,我认为这节课有以下几点做得不够好,有待改进:
这节课的练习设计不够精,因为希望把尽可能多的题型呈现给学生,所以没有把握好教学时间。因此,在教学中应该把握好教学的度,相信学生的能力,合理取舍教学内容。
我感觉在本节课的教学活动中,师生间的沟通交流上还有待于进一步加强,有时过高的估计学生的学习基础和理解能力,造成站位过高的局面。今后的教学中要全面、深入的了解学生,充分做好各方面的准备。对学生的评价语太单一,我觉得我应该在这方面多下功夫,应该让自己的评价与表情结合。
《植树问题》教学反思2
本节课研究的只是两端都栽的植树问题。主要目标是向学生渗透一种思想,一种在数学上、在研究问题上都很重要的思想——化归思想。这种思想的渗透能很好地帮助学生理解寻求解决复杂问题的一般方法,那就是从简单问题、简单事例入手,寻求规律,通过规律的得出,最终解决问题。
教学上我采用“自主——互助”的策略,力求让学生依据自学提纲及要求,通过独立思考,把不明白的问题与他人交流合作,使学生在不断地操作和交流中,经历发现和感受的植树问题的过程。环节如下:
一、通过课前活动,以大家都熟悉的上操站队为素材,让学生初步认识间隔,感知间隔数。
二、以自研题为载体,实现全课教学重点及难点的突破。
为此我设计分别在15米、20米、25米、30米的公路一边植树的问题,先让学生明确自学要求,然后根据要求独立研究与自己编号对应的一题,重点让学生通过画图栽栽看,发现一棵一棵种树关键是要找准间隔数,在经历了从简单事例入手之后,各部分名称的实际意义已经得到了强化。
与此同时,植树问题的一般解法也已经得到了归纳。然后用找到的规律去解例1中的在100米绿化带上植树的问题,使学生获得真实的学习体验的同时,也培养学生学习数学的兴趣。在这几个过程中,学生学到了解决问题的方法,同时也获得了更深层次的情感体验。
三、多角度的应用练习,巩固学生对植树问题的理解,突出教学重点。
四、通过达标检测活动,了解学生学习情况,为改进自己的教学和跟踪辅导提供有利的保障。
五、评价总结,拓展延伸。
通过出示不同类型的植树问题,让学生近一步体会数学源于生活,数学就在我们身边,从而使学生深刻感受到数学的应用价值,激发学生学习数学的兴趣,也为下一节数学课做好铺垫。
《植树问题》教学反思3
一、遇到的问题:
《植树问题》是三年级第一学期教材数学广场中的教学内容,也是二期课改中数学拓展性的知识。是曾经无数次被搬上?舞台?演绎出了许多经典课例。因此在教学准备阶段,我认真地研读了很多课例,发现在诸多课例中,存在着这样一个共同的特点: 任课教师都特别重视关于“植树问题”的三种不同类型的区分,即所谓的“两端都种”“只种一端”与“两端都不种” 。普遍采用了“学生独立探究(或分组探究)、反馈交流、教师总结”的模式进行教学。并将“三种情况”的区分以及相应的计算法则(“加一”“不加不减”“减一”)看成一种“规律”要求学生牢固地掌握,从而能在面对新的类似问题时不假思索地直接加以应用。 但是在这些课例的反思中,我又发现了一个共同的特点,很多学生能找到规律但不能熟练地运用规律,不能把植树问题的解决方法与生活中相似的现象进行知识链接。
二、第一次试教分析:
我根据教学内容的特点和学生的实际情况,在探究两端都植的规律时安排了动手操作,想通过引导学生积极参与,使学生在多种形式的教学活动中,加深对植树问题棵数和间隔数之间的关系的认识与理解。活动的设计是这样的:
出示一道开放性的题目:一条公路长( )米,每隔5米植一棵(两端都要植),需要多少棵?让学生自己确定这条路的长度,
从而探究出两端都要植树时的间隔数和棵数之间的关系,要求是这样的:设计:全长( )米,每隔5米,有( )个间隔,种( )棵树让学生独立思考,画线段图,填表,汇报。本以为自己设计的教案考虑到了学生的生活经验,结合生活实际,重视了数学思维培养,方法的渗透,是可行的,学生们应该是能够掌握的。可是在实际的教学过程中,在“植树”时还是跃跃欲试的学生们到“探究规律” 时一个个都像被打败公鸡,毫无斗志与反应。勉强参与的总是那几个平时成绩比较优秀的学生。看来这样的设计无法顾及全体学生的发展。没有了学生的主体参与,何来思维的培养,主题的建构呢?我开始反思:为什么学生不能找到简单植树问题的规律呢?为什么缺乏参与的积极性呢?学生一脸的茫然。经过反复的思考,我想到了我设计的探究活动有一定的问题,对于学生来说太抽象,太难了,自己确定长度时,要考虑到平均分还要分完,只给学生一条线段,他们不知道从何下手。我请教有经验的老师们,自己又反复琢磨,调整了自己的教学过程,从简单入手的思想,使这节课主线更清晰明朗了,即从生活中抽取植树现象,并加以提炼,然后通过猜想,验证,建立数学模型,再将这一数学模型应用于生活实际。这样能灵活构建知识系统,注重教学内容的整体处理。又能活用教材,对教材进行了整合和重构,让资源启迪探究。激发了学生探究的欲望。让学生比较系统地建立植树问题的三种情况,即两端都植;两端都不植;封闭情况下的植树问题(一头植和一头不植)。
三、第二次试教分析:
我把目标制定为:知识性目标:利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。过程性目标:进一步培养学生从生活实际问题中发现规律,应用规律解决问题的能力。
为了让学生掌握物体个数与间隔数的关系,课前我布置学生去数一数路灯排列有什么规律,初步感受物体个数与间隔数的关系,这样首先让学生在生活中学会有所观察,有所思索,有所实践。既能激起学生强烈的求知欲,做好课前准备,又能体会到数学知识在生活中的实际应用价值。在教学过程中,我创设情景聘请学生做环境设计师,说明学校南墙边有一段40米的小路,学校准备在路的一侧种树,按照每隔10米种一棵的要求设计一份植树方案,并说明设计理由,择优录用。我先请学生估计产生不同的意见,此时需要验证,怎样验证,学生想出不同的办法,给学生动手操作的时间和空间,让学生在操作中感悟,学生通过摆一摆,数一数,得出结果。学生的思绪一下打开了,最后出现了三种方案:第一种,两头都种,有5棵数。这样可以让学校有更多的绿色。第二种有3棵,头尾都不种。因为节约成本。第三种有4棵。种头不种尾;或者相反;又或者考虑树的实际生长空间不够,成本既不太高,绿色又不会太少。在这个环节,学生在实际操作中初步感受植树问题的特征,这个时候我利用模具加以归纳、总结,形成规律。学生靠自己主动、独立地完成所学任务,发现规律,发现特点,找到窍门,感到非常高兴,记得牢固。
但是问题又就出现了,在和学生开始列举生活中有关植树的问题的事情,然后运用学生自己发现的规律,解决插彩旗,仪仗队队伍的长度、走楼梯、锯木头等问题。为什么学生能够找到简单植树问题的规律“间隔数+1=棵数”“间隔数-1=棵数”却无法运用呢?在发现规律与运用规律间缺少了怎样的链接?
四、第三次试教分析:
首先,创设了情境,学生仅凭一次体验是不可能全部达到继续建构学习主题的水平。不仅需要向学生提供多次体验的机会,而且还需要创设能够激发学生共鸣的情境。在举例过程中,比如手指之间的点段,座位之间的位置关系,并且还利用了“一刀两断”来说明锯木头的问题,让我惊喜不已。学生真正的生活经验是他们身边熟悉的事物,这时的学生才会真正感兴趣,才能够产生共鸣,才易激发探究的欲望,让活动化的数学学习有个坚实的基础。
其次,书上的例题直接给出了植树的图片,棵数、段数一目了然,不利于学生进行独立的、深入地思考。如果在动手之前,再补充一句:根据题目要求,你想怎么种?有几种种法?画一画线段图或者用手边的东西代替树摆一摆。再出示3种植法的图片,学生证实自己的考虑是全面的。这样的设计会使学生的印象更加深刻。借助数形结合将文字信息与学习基础结合,使得学习得以继续,使得学生思维发展有凭借,才能使得数学学习的思想方法真正得以渗透
五、反思:
1、通过自主探索的活动,让学生获得学习成功的体验,增进学好
数学的信心。
结合学生的年龄特点和教学内容,我设计了很多需要学生自主探索的活动。例如:在创设情境、导入新课的第2个小环节中“如果你是园林工人,你会怎么种?”,让学生自主探索出在一条路上植树时,有3种不同的情况:“两端都种”“两端都不种”“只种一端”;再如:在自主探究、建立模型这一环节中让学生自定路长和间距,通过画图的方法验证“间隔数”与“棵数”之间的规律。又如:在最后联系实际,综合练习时,我放手让学生自选习题进行解答。
2、渗透“以小见大”的数学思想方法,培养学生数学思维能力和解决问题的能力。
“授人以鱼不如授人以渔”,新课程理念有个更具“与时俱进”的显著特点是对渗透数学思想方法的关注。在本课的教学过程中,要充分利用学生想检验大数目时遇到困难,可引导通过“以小见大”来找规律加以验证,让学生通过观察、猜测、实验、推理与交流等活动。从而不失时机给学生渗透常用的数学思想方法,为将来的后续学习积累更丰富实用的思想经验。
教学过程是这样的:在学生已经掌握了两头都植的规律的探究方法后,让学生分组自主寻找两头都不植的规律,学生通过自己动手画,自己整理表格,很快就发现了其中蕴含的规律,产生了很强的成功感,同时也有了一份自信,极大的调动了学生积极性。
3、关注植树问题模型的拓展和应用,注意反映数学与人类生活的密切联系。
《植树问题》教学反思4
植树问题是新人教版新课程标准实验教材五年级上册第七单元的内容。大家都知道,数学的思想方法是数学的灵魂。本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想。
植树问题教学侧重点:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。本单元的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。通过教学,不仅是向学生渗透某种数学思想方法,而且借助内容的教学发展学生的思维,提高学生一定的思维能力。
反思整个教学过程,我认为这节课有以下几点做得比较好:
一、创设浅显易懂的生活原型,让数学走近生活。
创设与学生的生活环境和知识背景密切相关的、学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。课前活动时,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。
二、注重学生的自主探索,体验探究之乐。
体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我注重了对数形结合意识的渗透。教学中我先激励学生自己做设计师,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就
是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧接着提出问题:“你能找出什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多
1。最后按照教材要求应用发现的规律来解决前面的植树问题:100米长的小路,按5米可以平均分成20段,也就是共有20个间隔,而栽树的棵数比间隔数多1,因此一共要准备21棵树苗。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
三、利用学生资源,加强生生合作
学生的认知起点与知识结构逻辑起点存在差异。生生之间的差异是学习的资源,这种资源应在小组交流的平台上得到充分的展示与合理的利用。在设计植树方案这一环节上,学生将间距定为1米、2米、4米、5米、10米,体现了思维的多样性。这单元教学充分利用了多媒体设备,所以课堂容量较大,但是也造成个别学生吃不透的现象。在以后的教学中要注意把握好度,适当进行取舍,照顾好中差生。
本单元教学不足的是:
一是没有举一反三的让学生进一步理解。
二是怎样让学生理解的更透彻,解题思路更清晰。功夫下的不深。 今后教学改进措施:
1、深钻教材,上课注重中差生,做到举一反三。
2、寻求学生最能理解的教学方法去教学。
3、课前一定要备学生。充分了解学情。
《植树问题》教学反思5
植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的一个新内容。教学中,首先要让学生区分出植树问题的三种类型。即所谓的“两端都种”“只种一端”(包括封闭图形)与“两端都不种” 的三种情况。并将“三种情况”的区分以及相应的计算法则(“加一”“不加不减”“减一”)看成一种“规律”,要求学生牢固地掌握,从而能在面对新的类似问题时不假思索地直接加以应用。
其次,要教给学生解题的方法。不管什么植树问题,一般都是先求出有几个间隔。可以根据“路的长度÷间隔长度=间隔数”然后再根据植树问题的三种类型(“两端都种”“只种一端”(包括封闭图形)与“两端都不种”)去求出棵树。也可以根数告诉的棵树,用“加一”“不加不减”“减一”求出间隔数,再求出路的总长。
其三,要让学生学会联系生活。把生活中的问题转化成植树问题。可以让学生找一找生活中的 “植树问题”,很多同学联想到:公路两旁的路灯、公路中的斑马线、楼梯的台阶、栏杆的铁柱等都含有与“植树问题”相同的数量关系。亚奥让他们学会分析是植树问题中的哪种类型。然后可以利用“植树问题”的规律来解决它。课堂中可以结合教学内容,让学生利用所学找到规律进行解决,使他们的认知得到进一步的深化和提高,从而获得了学习数学的乐趣,达到了理想的课堂教学效果。
植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的一个新内容。教学中,首先要让学生区分出植树问题的三种类型。即所谓的“两端都种”“只种一端”(包括封闭图形)与“两端都不种” 的三种情况。并将“三种情况”的区分以及相应的计算法则(“加一”“不加不减”“减一”)看成一种“规律”,要求学生牢固地掌握,从而能在面对新的类似问题时不假思索地直接加以应用。
其次,要教给学生解题的方法。不管什么植树问题,一般都是先求出有几个间隔。可以根据“路的长度÷间隔长度=间隔数”然后再根据植树问题的三种类型(“两端都种”“只种一端”(包括封闭图形)与“两端都不种”)去求出棵树。也可以根数告诉的棵树,用“加一”“不加不减”“减一”求出间隔数,再求出路的总长。
其三,要让学生学会联系生活。把生活中的问题转化成植树问题。可以让学生找一找生活中的 “植树问题”,很多同学联想到:公路两旁的路灯、公路中的斑马线、楼梯的台阶、栏杆的铁柱等都含有与“植树问题”相同的数量关系。亚奥让他们学会分析是植树问题中的哪种类型。然后可以利用“植树问题”的规律来解决它。课堂中可以结合教学内容,让学生利用所学找到规律进行解决,使他们的认知得到进一步的深化和提高,从而获得了学习数学的乐趣,达到了理想的课堂教学效果。
《植树问题》教学反思6
《植树问题》是四年级数学广角的内容,对于孩子们来说属于拓展提升类知识,对于三年级孩子来说理解起来更会有困难。下面就几方面谈一谈我的设计意图:
1、课堂中主要渗透了一一对应、化繁为简以及数形结合的数学思想,单纯的套用数量关系学习的知识则失去了它的持久性,要让学生在活动中深化数量关系,设计了数一数、画一画教学活动,这些活动都能帮助学生积累活动经验。
2、一一对应思想的渗透。在一一对应的思想上的,让学生体会并说出谁和谁为一组就是一一对应的体现,可以为学生接下来理解为什么多1、少1或相等打下良好的基础。
3、在追问中感知数量关系。数量关系的生成要经历一定的数学活动经验,让学生摆一摆、数一数只能观察比较出两种物体的个数的大小,继续追问:为什么+1,为什么—1?这样的追问是深化数量关系的有效前提。
4、重视不同情况的联系与区别。无论是植树问题还是间隔排列的两种物体,他们都有多种情况,而每一种情况都不是孤立存在的,规律之间的练习可以帮助我们教学过程中有效进行延展,而他们之间的区别则可以帮助学生加深每种情况本质的理解。
5、体现应用意识。数学知识来源于生活也应用于生活,对于植树问题的理解要拓展到平常生活中,这样能引导学生运用规律或者获得的策略以及感悟的数学思想来解决与植树问题有着共同数学知识结构的实际问题。
本节课的不足以及应改进的地方:
1、把100米简单化到20米,仍然不够简单,对学生的理解题意造成了一定的困难。如果改成总长5米,间隔1米,会更好理解。
2、讲解三类情况时,应以“只在一端”这种简单情况为例,重点讲解,降低学生学习难度。
3、教态不够自然,语言表情亲和力不够,在平时教学中应加强锻炼,注意培养。
每一次讲课对自己来说都是一次锻炼,都是一次进步的机会。备课、讲课、反思,每一步都需要用心去思考,思考的过程就是进步的过程,相信经过这样的一次次历练,自己会做的更好。
《植树问题》教学反思7
《植树问题》是智慧广场中的内容,主要是向学生渗透有关植树问题的一些思想方法,通过现实生活中一些实际问题,让学生发现规律,然后再用发现的规律解决生活中的一些实际问题。植树问题分为两端都栽、两端都不栽、一端栽一端不栽三种情况。本节课教学的是植树问题中的第一种情况,即两端都栽的问题。反思整个教学过程,我认为有以下几点做得比较好:
一、关注学生的学习起点
学生是数学学习的主人,教师作为学生学习的组织者、引导者与合作者,应及时关注学生学习的起点。在教学过程中,我通过对五指的手指个数与手指缝之间关系的探究,在直观形象的手指演示中让学生初步感知棵数与间隔数的关系。本课伊始,我首先出了个谜语:“一棵树,五个叉,不长叶子不长花,能写能做还会画,就是不会开口讲讲话。”随后让学生观察自己的手指,引导学生得出:五个手指有4个间隔,4个手指有3个间隔,3个手指有2个间隔,2个手指有1个间隔。使学生清楚地看出手指的个数与间隔数之间是相差1的。接下来又通过做快速问答的游戏,使学生加深认识了植树问题中间隔数和棵数的关系,为下面的学习做了铺垫,同时学生的学习兴趣也被激发了起来。由此可见,我们在教学中一定要关注学生的学习起点,放低起点,这样才会收到事半功倍的效果。
二 、注重学生的自主探索
在探索新知这个环节,是这样设计的:
快乐探究:
在20米长的小路一边等距离植树,两端要栽,可以怎样栽树苗?
设计了一个表格
全长(米) 间隔(米) 线段图 间隔数(个) 棵数(棵)
1、把上表补充完整。
2、“两端要栽”的时候,我发现:棵树比间隔数
我能用等式表示棵数与间隔数之间的数量关系:
棵数=
学生通过自己动手画图,很快就发现了其中蕴含的规律。展示环节,我让展示小组的学生利用展示台给大家展示,学生指着自己画的线段图边讲解边说,让其他同学清楚地看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。改变间距后,段数和棵数相应也发生了变化。
通过自学,小组交流,小组展示,学生很容易的得出了在两端栽的情况下棵数与间隔数之间的关系是:总长÷间距=间隔数,棵数=间隔数+1。整个学习过程都是学生自主探索的结果。学生把整个分析、思考、解决问题的过程全部自己展示了出来。在这一过程中,学生积极思考,大胆尝试,主动探索,也体验到了成功的喜悦和学习的乐趣。
三、关注植树问题模型的拓展和应用
规律总结出来了,我并没有就此罢手,而是让学生找生活中的类似现象,使学生认识到生活中的许多事例看上去跟植树问题毫不相干,但是只要善于观察题中的数量关系,就明白它与植树问题的数量关系很相似,如计算公共汽车从起点站到终点站所行的距离及爬楼梯问题。求路边的电线杆、排座位、在路两旁安装路灯、插彩旗等等,目的是让他们利用所学植树问题的知识来解决生活中的数学问题,使学生感受到数学知识源于生活,用于生活,数学就在我们身边。从而使学生深刻感受到数学的应用价值。
四、渗透数形结合的思想,培养学生借助图形解决问题的意识
数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质。本着这个思想我在让学生理解间隔数与植树棵数之间的规律时,我采用数形结合的方法——画图解决问题,从而逐步提高学生解决问题的能力。练习环节,我还设计了我们平时熟悉的钟声,让学生听钟声,在听到基础上用线段图画出钟声和他们之间的时间的间隔。学生在听、画之后初步感受了间隔数和棵数之间的关系。同时,通过画图,降低了此题的难度。再如:在解决锯木头问题时,通过成语“一刀两断”引出“一刀两段”,结合线段图,清楚地使学生理解间隔数总是比端点数少,使用数形结合的方法,在增加学生学习兴趣的同时,植树中棵树和间隔数之间的关系便迎刃而解。
存在问题:
把学生估计过高,以为只要学生弄懂了棵数与间隔数之间的关系之后,解决植树问题就应该没多大的问题了,但事实出乎预料,因为例题是给了全长和间距求棵树,但“做一做”却是给了间距和棵树求全长,属于逆向思维,所以,有好多同学就不知从何下手了,导致出错很多。其实就是在发现规律与运用规律间缺少了链接,应加强对规律的扩散教学,比如:得出规律时,可以总结一下“间隔数=棵数-1,路长=间隔数×间隔长”等知识的扩散。
《植树问题》教学反思8
《植树问题》是人教版新课程标准实验教材五年级上册“数学广角”的内容,曾经被演绎出了许多经典课例。因此在教学准备阶段,我认真地研读了很多课例,发现在诸多课例中,存在着这样一个共同的特点:任课教师都特别重视关于“植树问题”的三种不同类型的区分,即所谓的“两端都栽”“只栽一端”与“两端都不栽”。普遍采用了“学生独立探究(或分组探究)、反馈交流、教师总结&rdq
uo;的模式进行教学。并将“三种情况”的区分以及相应的计算法则(“加一”“不加不减”“减一”)看成一种“规律”要求学生牢固地掌握,从而能在面对新的类似问题时不假思索地直接加以应用。同时在这些课例的反思中,我又发现了一个共同的特点,很多学生能找到规律但不能熟练地运用规律,不能把植树问题的解决方法与生活中相似的现象进行知识链接。
通过对教材和各种相关的教学资料的深入解读,我认为“植树问题”就教学而言,可分为两个不同的教学目标:
一、明确引出“间隔数”与“棵数”这两者的关系,突出“一一对应”的思想,并以此为基础分析植树问题三种不同的情况,即“两端都栽”“只栽一端”与“两端都不栽”,使学生真正理解棵数与间隔数的关系。
二、总结出相关的计算公式“总长÷间距=间隔数”,并通过公式帮助学生更好地去掌握这一解题模式。
反思整个教学过程,我认为这节课在以下几个方面还是处理得比较好:
1、这节课主线明朗清晰,即从生活中抽取植树现象,并加以提炼,然后通过猜想,验证,建立数学模型,再将这一数学模型应用于生活实际。
2、我注重教学内容的整体处理,对教材进行了整合和重构,设计的例题是一个开放性的题目,开放性的设计,使课堂成为充满活力的自由空间,从而激发学生的思维,让他们积极地去探究,使学生完整的体验“植树”这一实践活动,让学生比较系统地认识到在直线上植树有三种情况,即两端都栽;两端都不栽;只栽一端。
3、植树问题的思维有一定的复杂性,对于刚接触植树问题的四年级学生来说,则更有一定的难度了。所以,我让学生根据示意图用算式来表示出植树的棵数,学生在列式计算的过程中,通过直观的观察初步感知三种情况:两端都栽“棵树=间隔数+1”,只栽一端“棵树=间隔数”,两端都不栽“棵树=间隔数-1”。之后,再引导学生用“一一对应”的思想,举起右手比划比划,分析植树问题三种不同的情况,即“两端都栽”“只栽一端”与“两端都不栽”,从而真正理解这三种情况下,棵数与间隔数的关系。
4、学生列式计算出三种栽法的棵数后,我引导学生思考:这三种情况,我们在列式计算棵数时,第一步都是先求什么,怎样求?通过学生的小组讨论后得出:要求棵数,得先求间隔数,并清楚地总结出相关的计算公式“总长÷间距=间隔数”,通过公式帮助学生更好地去掌握这一解题模式。
5、注意反映数学与人类生活的密切联系。巩固练习之后,我以图片的形式让孩子们了解生活中与植树问题相似的现象,让学生进一步体会,现实生活中的许多不同事件都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。
我感觉这节课的不足之处有以下几点:
1、数学的思想方法是数学的灵魂。本册安排“植树问题”的目的之一就是向学生渗透复杂问题从简单入手的思想,本节课没有让学生体验到“复杂问题简单化”的解题过程。
2、一堂课上下来,觉得还是对学生扶的很牢,没有完全放开,以至课堂中还有很多不足之处,期待日后调整改进。
3、对课堂的生成问题处理还不够灵活,不能进行很好的利用。
在今后的教学中,希望能通过自己一点一滴的积累和改进,提高自己的业务水平和调控、处理课堂生成的能力,在不久的将来,能看到更棒的自己。
《植树问题》教学反思9
20xx年4月15日,我参加了丰都县三坝乡录像课决赛课活动。我参赛的内容是《植树问题》。《植树问题》是人教版义务教育课程标准实验教科书四年级下册中数学广角的内容。数学广角作为人教版新增的内容之一,其目的是向学生渗透一些重要的数学思想方法。教材通过现实生活中一些常见的实际问题,让学生从中发现规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。我发现单纯的用规律去解决实际生活中的植树问题,对学生有些难,所以我在课堂中重视规律更强调方法。从教学目标的设定,教学设计和知识结构分析来看,通过实践,基本上我感觉还算是比较成功的一堂课,有很多收获,感悟如下:
这个知识点的原型是一条直线路上用不同的间隔来栽树,得到不同的棵树,通过数字间的归纳,得出规律性结论并应用。教材将植树问题分为几个层次:两端都种,两端不种,只种一端。在教学中,侧重于向学生渗透化归的数学思想。在我看来,我们不仅仅是让学生会熟练地解决与植树问题相关的实际问题,而应该是将此类题作为渗透学生化归思想和原型提炼方法、甚至是培养学生双向可逆思维的一个学习支点,我要做的就是借助内容的教学发展学生的思维并提升思维的能力,通过课堂结果来看,还是取得了一定成效。
一、教学设计有深度、有厚度
教学设计分两条线走:一条线以构建学生知识结构为线索,使学生对植树问题的认识经历了“生活问题---猜想验证---建立模型”不断数学化的过程,较好的实现了由生活中的.具体问题过渡到相应的“数学模式”,为上升到更抽象的数学高度奠定了基础。然后又让学生运用模型解决问题,把数学化的东西又回归生活,也让学生再一次体验数学与生活的紧密联系。另一条线以渗透数学思想方法为线索。对于植树问题的探究,不仅让学生通过画线段图的方式,自主探究、小组合作、寻找、掌握等模式,而且结合线段图让学生理解了为什么两端都要种时,棵树要比段数多1,多的1指的是哪棵树。让学生不仅要知其然,还要知其所以然。
二、敢于放手让学生去探究,体现学生的主体地位
整堂课,我都是让学生通过自主探究,小组合作,汇报交流而得出结论。是他们自己总结出来的规律,而不是老师给他们灌的。因为我知道学生才是学习的主体,学习的主人。在这里为了便于研究,我把例题稍作了改动,原来是20米,每隔5米植一棵,我改为12米,每隔3米植一棵。(因为上这节课之前我试上过几次,学生画20米就画的20厘米,本子不够长。所以我就作了调整。)我把这一个单元的内容拿到这一节课来教学(三种植法),让他们小组讨论帮组设计植树方案。这个时候在组内就产生了争议,我不怕他们争论。有的事情就是要越辩才越明。我觉得学生在争论是好事。还有教师点拨时指出了段数就是间隔数(因为在试上时我说间隔数有部分学生不理解,我说段数学生都知道,所以这次教学时我把间隔数改成了段数)。
三、关注拓展和应用
植树问题在现实中的应用有很多,我们不但要讲清楚,辨析出由于路线不同,植树要求不同,路线被分成的段数和植树棵数之间的关系就不同,比如安装路灯,比如切割,比如上楼梯,比如敲钟,比如锯木头等等,掌握了以后都可以用植树问题的模型来解决它,所以在教学设计的时候,充分考虑不同的题目,并不断提出变式的要求。
四、教学中,我认为以下几点要改进:
1、由于这节课充分展示多媒体对教学的辅助作用,所以容量比较大,有个别学生吃不透,对教材的梳理上还要学会取舍,照顾好中差生。
2、除非题目中出现很明显的两端都种,否则学生不大会主动判断属于哪一类植树问题。
3、解决问题时,审题不够谨慎,容易忽略两边或者两端这样的词语。
4、教师对课堂的生成问题处理还不够灵活。
5、对学生的评价这块还显得能力不足。
6、普通话也有待提高。
总之,一节课下来,发现自己真的还有那么多的不足之处,而且这些不足还不是一时半会能解决的。反思自己,今后还应加强学习,学习理论知识,学习优秀课例,特别是应针对自己的不足之处,运用与实际教学中。希望能通过自己的一点一滴积累和改进,提高自己的业务水平和调控、处理课堂生成的能力。希望不久的将来,能看到令自己满意的自己。
《植树问题》教学反思10
《植树问题》一课蕴含了许多数学思想方法,但对这些数学方法的挖掘和处理可谓“仁者见仁,智者见智”。我觉得这一课的数学思想方法主要是“化繁为简”或者说是从简单入手寻找规律,而这种方法在北师大版教材中体现得淋漓尽致,而在人教版教材的编排上可谓“若隐若现”,因此我觉得我们使用人教版教材的课堂,应该充分挖掘教材教给学生这种解决问题的策略。
课堂教学中我安排了三个层次的探究活动,从实物操作到画线段图到类比推理,有效地突出了解决问题策略的重要性和多样性。学生在课堂上也领略到数学智慧的夺目光彩,增强了学生学习数学的兴趣和信心。通过本课的设计和实践,我更迫切地感受到数学思想和方法在学生学习和生活中的重要性,因此对数学思想和方法在课堂中落实的研究迫在眉睫。这也是当前数学课堂中存在的重要缺失,身为教研员更为向广大教师传播数学思想和方法的重要性,并提出渗透数学思想,教给学生数学方法的有效措施。
本课中为了突显解决问题策略的多样化和完整性,我把教材中原本安排两课时完成的内容缩成一课时。而且在这一课时我把教学重点放在学生解决问题策略的学习、理解上,因此对于本课的知识点的处理上略显不足。
《植树问题》教学反思11
“植树问题”教材将植树问题分为几个层次:两端都种、两端不种、只种一端及封闭图形。
我设计了以下几个环节。
一、通过课前活动,以大家都熟悉的手为素材,从让学生初步认识间隔,感知间隔数与手指数的关系。
二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。
三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。
四、多角度的应用练习巩固,拓展学生对植树问题的认识。
反思整个教学过程,我认为这节课有以下几点做得比较好:
一、创设浅显易懂的生活原型,让数学走近生活。
课前活动时,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。
二、注重学生的自主探索,体验探究之乐。
生活情景图引入后出示实例图示,引导学生在观察、点数形象图形后进行填表,发现两端植树时棵树与间隔数之间的关系。当学生对实物图有了清晰的认识后,教师将形象的图形抽象成线段图,让学生在脱离实物图后,依然能够发现棵树与间隔数之间的关系。在电脑演示中学生直观的体会到了植树问题中相关的量,在观察思考后学生则进一步验证了棵树与间隔数之间的关系。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
这节课充分利用了多媒体设备,所以课堂容量较大,但是也造成个别学生吃不透的现象。在以后的教学中要注意把握好度,适当进行取舍,照顾好中差生。
《植树问题》教学反思12
本节课的内容是在学习两端都栽、两端都不栽的基础上进行教学的。在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。
成功之处:
1.多种方法解答,拓展学生的思维。在例3的教学中,通过学生自主探索,发现四种解题方法如下:
方法一:黑色棋子+白色棋子=可以摆的棋子
19×2 + 17×2
=38+34
=72(个)
方法二:每边的个数×4边=可以摆放多少个
18 × 4 = 72(个)
方法三:每边能放个数×4-重复的4个=可以摆放的棋子
19×4 - 4
=76-4
=72(个)
方法四:每边看作17个,有4边,再加上四个角的4个。
17×4 +4
=68+4
=72(个)
通过这几种方法的展示,让学生不仅仅局限于一种解题思路,而是根据自己的实际水平选择适合的方法,利用培养学生思维的灵活性和拓展性。
2.不拘泥于课件的使用。在例3的教学中,虽然每种解法都制作了课件,但是在实际的教学中发现利用在黑板实际画图,分析每一种解法,更加有利于学生对此解法的分析,利用学生对每种解法的理解。
不足之处:
在拓展解题思路的同时,相应地就减少了练习的时间,导致练习量不足。
再教设计:
每种解法不再利用课件进行展示,在黑板上画图进行分析和理解,减少课件制作上的费时费力。
《植树问题》教学反思13
植树问题是人教版四年级下册数学广角的内容,教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法化归思想,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学发展学生的思维,提高学生一定的思维能力。
我所执教的是教材第117页的内容,主要教学两端都栽的植树问题,这节课主要目标是向学生渗透复杂问题从简单入手的思想。使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。因此在设计这节课时,我主要是运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。以此为基础,根据学生的认知规律,我设计了以下几个环节。
一、通过课前活动,以大家都熟悉的手为素材,从让学生初步认识间隔,感知间隔数与手指数的关系。
二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。
三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。
四、多角度的应用练习巩固,拓展学生对植树问题的认识。
反思整个教学过程,我认为这节课有以下几点做得比较好:
一、创设浅显易懂的生活原型,让数学走近生活。
创设与学生的生活环境和知识背景密切相关的、学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。课前活动时,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。
在处理教材时我把例题改为条件开放的植树问题,不规定间距,同时改小数据,将路的长度变成20米。如此修改的意图是,让学生在开放的情境中,突现学生的知识起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。 在这里数据小了,便于学生利用线段图操作,建立数形结合,有利于学生的思考,降低了学习的难度。
二、注重学生的自主探索,体验探究之乐。
体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我注重了对数形结合意识的渗透。教学中我先激励学生自己做设计师,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧接着提出问题:你能找出什么规律?启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多1。最后按照教材要求应用发现的规律来解决前面的植树问题:100米长的小路,按5米可以平均分成20段,也就是共有20个间隔,而栽树的棵数比间隔数多1,因此一共要准备21棵树苗。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
三、利用学生资源,加强生生合作
学生的认知起点与知识结构逻辑起点存在差异。生生之间的差异是学习的资源,这种资源应在小组交流的平台上得到充分的展示与合理的利用。在设计植树方案这一环节上,学生将间距定为1米、2米、4米、5米、10米,体现了思维的多样性。
四、关注植树问题模型的拓展和应用
植树问题的模型是现实世界中一类相近事件的放大,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,加强了模型应用功能的练习,本课练习有以下两个层次:
(1) 直接应用模型解决简单的实际问题。课堂上,安排学生自主完成已知总长和间距求棵数、已知棵数和间距求总长的练习,让学生从正反两个方面出发,直接应用模型解决简单的实际问题。训练学生双向可逆思维的能力。
(2)推广到与植树问题相近的一些问题中,让学生进一步体会,现实生活中的许多不同事件,如教室里的座位的事件,公共汽车站台的事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。以图片的形式让孩子们了解生活中与植树问题相似的现象,最后还把刘翔2004年雅典奥运会上精彩夺冠的场景再次重现,并出示110米栏的图,从中找到间隔,同时,渗透爱国主义教育。
这节课充分利用了多媒体设备,所以课堂容量较大,但是也造成个别学生吃不透的现象。在以后的教学中要注意把握好度,适当进行取舍,照顾好中差生。
《植树问题》教学反思14
12月2日我有幸观摩了胡圆老师执教的《数学广角》一课,本节课胡老师通过一系列的游戏活动,让学生在轻松的学习氛围中经历重复问题的探究过程,利用直观图和集合的思想方法解决生活中的实际问题,让数学课堂活起来了。下面结合这节课的一些细节,谈谈我的一些思考。
开课伊始,教师先给同学们讲了一个理发师理发的故事,一下子就调动了学生的思维,教师引导学生探究出同一个人扮演爸爸和儿子角色,为后面学习重复知识埋下伏笔。接着老师组织了抢椅子的游戏,又通过石头剪刀布活动选出参加抢椅子游戏的选手,此时,教师提出了问题:参加活动的人一共多少人?请参加活动的人站起来!教室有6名学生站起来了,教师又提出了疑问:“不对呀,参加剪刀石头布的是4个人,参加抢椅子游戏的是3个人,4+3=7。应该是7个人啊!”事实和老师的推理发生了碰撞,学生陷入了思考,矛盾中急需老师的点拨。而老师并未马上揭晓原因,而是拿出了两个呼啦圈,让参加剪刀石头布的4名学生先钻入1号圈中,让参加抢椅子的3名同学再钻入2号圈中,在这个过程中,全体学生发现刘阳同学开始钻入1号圈又钻入2号圈,他既参加了剪刀石头布活动,又参加了抢椅子游戏。老师又提出问题:“那怎么样让刘阳既在1号圈又在2号圈?”学生提出将两个圈重合一部分,刘阳就站在重合的这部分,刘阳的身份是双重的,此时学生对于刚才遇到的矛盾冲突已经有了理性的解释。接着老师又将两个重合一部分的圈画到黑板上,形成了集合圈,并让6名参加游戏的学生上台在合适的位置贴上自己的名片。学生将刘阳的两张名片重合在一起贴在两个圈相交的部分。此时老师引入了重复现象,学生对重复现象有了清晰的认识了。从呼啦圈过度到黑板上的集合圈,是一个从具体到抽象的过程,正符合小学的思维特点。教师引导学生探索知识的过程,正是学生在头脑中进行建模的过程,课堂上教师组织的游戏活动正是知识的直观依托。
老师在引入概念后,马上在课件上出示了一些集合圈,让学生判断哪些是重复现象,哪些不是重复现象,对新知进行了巩固。学生对重复现象有了更深刻的理解。课堂练习内容有利于学生利用重复现象和集合思想解决生活中的问题,通过练习,让学生进一步巩固新知。
本节课中还有很多值得我们学习的地方,环环相扣的教学流程,大胆创新的教学理念,循循善诱的教师引导,新颖活泼的教学形式给我留下了深刻的印象,希望在今后的教学中,自己能够认真研读教材,设计出更好的教学方案,并能将其灵活运用于自己的教学中。
《植树问题》教学反思15
存在问题:
一、练习设计缺乏趣味性
题型设置太过单一(应用题),可挑选些填空题、选择题,让孩子们进行智力闯关,从而体验作业也是一种快乐。
二、细节的处理不够到位
要善于鼓励。轻松愉悦的课堂离不开学生的积极投入,更离不开老师由衷的鼓励。课堂中,我惦记着教学任务,也放不开自己,没能经常鼓励、赞美学生,好孩子可是夸出来的呀!
三、对学生估计过高
这节课还有不足的地方,那就是我把学生估计过高,我以为只要学生弄懂了棵数与间隔数之间的关系之后,解决植树问题就应该没多大的问题了,但事实出乎我的预料,因为例题是给了全长和间距求棵树,但“做一做”却是给了间距和棵树求全长,属于逆向思维,所以,有好多同学就不知从何下手了,导致出错很多。其实就是在发现规律与运用规律间缺少了链接,应加强对规律的扩散教学,比如:得出规律时,可以总结一下“间隔数=棵数-1,路长=间隔数×间隔长”等知识的扩散。